CLASS OF 2011 CAREER OUTCOMES
FIVE-YEAR POST-GRADUATION

CO-OPS + CAREERS
Center for Cooperative Education and Career Development
# Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Responses by Major</td>
<td>1</td>
</tr>
<tr>
<td>All Institute Outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Class of 2011 Then and Now</td>
<td>3</td>
</tr>
<tr>
<td>Results Tables</td>
<td>4-6</td>
</tr>
<tr>
<td>As a result of earning my Wentworth degree...</td>
<td>7-9</td>
</tr>
<tr>
<td>Architecture</td>
<td>11-14</td>
</tr>
<tr>
<td>Civil Engineering Technology</td>
<td>15-20</td>
</tr>
<tr>
<td>Computer Engineering Technology</td>
<td>21-26</td>
</tr>
<tr>
<td>Computer Networking and Information Systems</td>
<td>27-30</td>
</tr>
<tr>
<td>Computer Science</td>
<td>31-36</td>
</tr>
<tr>
<td>Construction Management</td>
<td>37-46</td>
</tr>
<tr>
<td>Facilities Planning and Management</td>
<td>47-49</td>
</tr>
<tr>
<td>Industrial Design</td>
<td>50-55</td>
</tr>
<tr>
<td>Interior Design</td>
<td>56-61</td>
</tr>
<tr>
<td>Management</td>
<td>62-64</td>
</tr>
<tr>
<td>Mechanical Engineering Technology</td>
<td>65-70</td>
</tr>
</tbody>
</table>
Introduction

Most colleges and universities measure the success of the education they provide by measuring the career outcomes of their new graduates. The National Association of Colleges and Employers (NACE), in 2015, created standards and protocols that stated all colleges and universities should begin surveying their students six-months post-graduation, which is the protocol Wentworth Institute of Technology follows.

To understand the full impact of a Wentworth education, the Center for Cooperative Education and Career Development (CO-OPS + CAREERS) launched a survey of alumni five-years post-graduation. The office gathered in names and email addresses of all who graduated with a degree in 2011 from the Registrar’s Office and uploaded that information into Survey Monkey. Certificate students were not surveyed. The office worked with the deans and Institutional Assessment to create questions that would not only measure career success, but would provide information to accreditors that measure the impact of a Wentworth education. Using skip logic, the alumni were driven to questions specific to their major and that major's learning outcomes. The first section of this report provides answers to questions that were asked of all majors. The second section provides details of questions asked by major.

In October 2016, a web link was posted in the Institute’s LinkedIn alumni group and 36 graduates responded. Additionally, an email was sent to 629 alumni which garnered 95 responses. Combined, we received responses on 122 alumni, providing us with an alumni response rate of 19%.

Responses by Major

<table>
<thead>
<tr>
<th>Majors</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture (B.S)</td>
<td>33</td>
</tr>
<tr>
<td>Building Construction Management</td>
<td>5</td>
</tr>
<tr>
<td>Civil Engineering Technology</td>
<td>12</td>
</tr>
<tr>
<td>Computer Engineering Technology</td>
<td>3</td>
</tr>
<tr>
<td>Computer Network and Information Systems</td>
<td>8</td>
</tr>
<tr>
<td>Computer Science</td>
<td>8</td>
</tr>
<tr>
<td>Construction Management</td>
<td>8</td>
</tr>
<tr>
<td>Electromechanical Engineering</td>
<td>6</td>
</tr>
<tr>
<td>Electronic Engineering Technology</td>
<td>1</td>
</tr>
<tr>
<td>Facilities Planning and Management</td>
<td>5</td>
</tr>
<tr>
<td>Industrial Design</td>
<td>4</td>
</tr>
<tr>
<td>Interior Design</td>
<td>11</td>
</tr>
<tr>
<td>Management</td>
<td>6</td>
</tr>
<tr>
<td>Mechanical Engineering Technology</td>
<td>7</td>
</tr>
<tr>
<td>None of the above</td>
<td>2</td>
</tr>
<tr>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>Grand Total</td>
<td>122</td>
</tr>
</tbody>
</table>
2011 Alumni Career Outcomes

All Institute Outcomes

All respondents were asked questions about their employment, graduate school, job title, salary and location of employment. They were asked if their employment is related to their field of study, how long it took to find employment related to their studies and if they obtained professional licensure or certification. They were also asked to measure their job performance, confidence, rate of promotion and knowledge and skills against their non-Wentworth educated peers. Finally, they were asked if they perceived that the tuition they paid was a worthwhile investment.

Over 90% of the respondents are working in their field of academic study today compared to 84% six-months post-graduation. The average salary today is $71,646 compared to $48,149 six-months post-graduation. The current median salary range is $70,000-74,999. Over 24% are earning between $75,000-89,000 annually.

Obtaining a professional position took six months or less of 75% of the respondents and between seven to eighteen months for 18% of the respondents. Seven percent have never secured a position related to their studies.

Going to graduate school was important to many of the class of 2011. When initially queried at graduation, 26% responded that they were accepted and planning to attend graduate school. In 2016, 34% responded that they completed graduate school. The top graduate schools attended were Wentworth Institute of Technology, Worcester Polytechnic Institute and the University of Massachusetts.

Since many of the professions our alumni enter require certification or licensure, we asked if either of these have been obtained. Only 24% have acquired either certification or licensure. Some (14) of respondents are currently in the process of obtaining a license or certification. Six have changed career paths, seven have obtained either a masters or Ph.D., and 17 say that their job doesn’t require either or they have no desire to have either.

We asked all graduates to rate their career trajectory and job performance by asking four questions. Sixty-eight percent believe that their job performance is better than those of their non-Wentworth peers. Sixty-seven percent believe that their technical knowledge and skills are better than their non-Wentworth peers. Ninety-two percent are confident in the workplace and 53% believe that they were promoted faster than their non-Wentworth peers. Eighty-five percent believe that the tuition they paid at Wentworth was a worthwhile investment.
THE CLASS OF 2011

THEN AND NOW

$48,149  $71,646
84%  91%
26%  34%
75%  67%
68%  19%

Average Salary  Work Related to Major
Graduate School  Employed In MA
Response Rate

Five-Year Post-Graduation Survey Results Obtained 2016
120 Responses
2011 Alumni Career Outcomes

Is your current employment related to your academic studies?

- 91% Yes
- 9% No

What is your current annualized salary range?

**Average Salary:** $71,646.23

**Median Salary Range:** $70,000-74,999
After graduation, how long did it take you to secure employment related to your studies?

![Bar chart showing % of Alumni Responses](chart.png)

- 75% 6 months or less
- 9% 7-12 months
- 9% 12-18 months
- 7% I have never secured employment related to my studies

**Current Alumni Employment Locations**

![Pie chart showing Alumni Responses by Location](chart.png)

- MA, 67%
- NY, 5%
- RI, 4%
- ME, 4%
- NH, 4%
- PA, 3%
- CT, 3%
- International, 2%
- TX, 1%
- OH, 1%
- OR, 1%
Have you obtained professional certification or license related to your profession?

- **76%** Yes
- **24%** No

Top Certifications/Licenses received:
- Construction Supervisors License
- OSHA 30hr. Certification
- Engineer-In-Training
- Registered Architect
As a result of earning my Wentworth degree...

We asked all graduates to rate their career trajectory and job performance by asking four questions. Sixty-eight percent believes that their job performance is better than their non-Wentworth peers, 67% believe that their technical knowledge and skills are better than their non-Wentworth peers, 92% are confident in the workplace and 53% believe that they were promoted faster than their non-Wentworth peers. Eighty-five percent believe that the tuition they paid at Wentworth was a worthwhile investment.

My job performance is better than my non-Wentworth peers.
I am confident in the workplace.

- **53%** Strongly Agree
- **39%** Agree
- **5%** Disagree
- **3%** Not Applicable

I have received (a) promotion(s) faster than my non-Wentworth peers.

- **42%** Strongly Agree
- **26%** Agree
- **11%** Disagree
- **17%** Strongly Disagree
- **4%** Not Applicable
2011 Alumni Career Outcomes

My technical knowledge and skills are better than my non-Wentworth peers.

The tuition I paid at Wentworth was a worthwhile investment.
Learning Outcomes by Major

This section provides information that measure the impact of a Wentworth education using questions specific to each major’s accrediting body and learning outcomes.
Class of 2011  
Architecture  
Learning Outcomes

Ability to articulate effectively their design concepts in written, verbal and graphic format, applying the appropriate media for communicating their ideas.

---

The ability to develop abstract ideas and concepts through critical, rational and intuitive thinking in order to resolve complex design problems using research, making and experimentation.
Class of 2011
Architecture
Learning Outcomes

The ability to describe both the parallel and divergent histories of architecture and urban spaces as well as identify the social and spatial patterns that characterize different cultures and individuals.

The ability to translate codes, develop a functioning program, respond to and design sites, integrate appropriate facilities and systems as well as apply the principles of life-safety and accessibility standards.
Class of 2011
Architecture
Learning Outcomes

The ability to employ their knowledge of basic structural systems and apply appropriate structural systems to their design solutions.

The ability to select and apply the most appropriate environmental (both active and passive) and building systems, for both program and site while considering the environmental impact and potential sustainability of their decisions.
Class of 2011
Architecture
Learning Outcomes

The ability to make integrated design decisions, relying on their critical assessment and evaluation, in order to synthesize environmental, technical, accessibility, structural and material issues.

The ability to interpret the nature and importance of professional practice by evaluating plans, schedules, specifications and financial data.
Class of 2011
Civil Engineering Tech
Learning Outcomes

Ability to apply knowledge of advanced mathematics (including differential equations and statistics), science, and engineering to solve the problems at the interface of engineering and biology.

Ability to design and conduct experiments, as well as to analyze and interpret data from living and non-living systems.
Class of 2011
Civil Engineering Tech
Learning Outcomes

Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

Ability to function on multi-disciplinary teams.
Class of 2011
Civil Engineering Tech
Learning Outcomes

Ability to identify, formulate, and solve engineering problems.

Understanding of professional and ethical responsibility.
Class of 2011
Civil Engineering Tech
Learning Outcomes

Ability to communicate effectively.

Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
Class of 2011
Civil Engineering Tech
Learning Outcomes

Recognize the need for, and an ability to engage in life-long learning.

Knowledge of contemporary issues.
Class of 2011
Civil Engineering Tech
Learning Outcomes

Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

42% of Civil Engineering Technology Alumni Responses

58% of Civil Engineering Technology Alumni Responses

Strongly Agree
Agree
2011 Computer Engineering Tech Learning Outcomes

Ability to apply knowledge of advanced mathematics (including differential equations and statistics), science, and engineering to solve the problems at the interface of engineering and biology.

Ability to design and conduct experiments, as well as to analyze and interpret data from living and non-living systems.
Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

Ability to function on multi-disciplinary teams.
Ability to identify, formulate, and solve engineering problems.

Understanding of professional and ethical responsibility.
2011 Computer Engineering Technology Learning Outcomes

Ability to communicate effectively.

Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
Recognize the need for, and an ability to engage in life-long learning.

Knowledge of contemporary issues.
Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Class of 2011
Computer Networking & Information Systems Learning Outcomes

Proficiency in relevant aspects of mathematics and quantitative decision-support tools for CIS decision-making.

Business and systems programming skills.
Class of 2011
Computer Networking & Information Systems Learning Outcomes

Knowledge of the fundamental principles in the functional areas of business and CIS.

Effective professional communication skills.
Class of 2011
Computer Networking & Information Systems Learning Outcomes

An ability to analyze the social and human context of computing, including ethical, legal, security, and global issues.

An ability to work in teams.
An ability to design, implement, and evaluate an information system, and to compare alternative solutions.
Class of 2011
Computer Science
Learning Outcomes

Proficiency in relevant aspects of mathematics and quantitative decision-support tools for CIS decision-making.

An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
Class of 2011
Computer Science
Learning Outcomes

An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.

An ability to function effectively on teams to accomplish a common goal.
Class of 2011
Computer Science
Learning Outcomes

An understanding of professional, ethical, legal, security and social issues and responsibilities.

An ability to communicate effectively with a range of audiences.
Class of 2011
Computer Science
Learning Outcomes

An ability to analyze the local and global impact of computing on individuals, organizations, and society.

Recognition of the need for and an ability to engage in continuing professional development.
An ability to use current techniques, skills, and tools necessary for computing practice.

An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved.
An ability to apply design and development principles in the construction of software systems of varying complexity.
Create oral presentations appropriate to the Construction Discipline.

Create written communications appropriate to the construction discipline.
Class of 2011  
Construction Management  
Learning Outcomes

Apply construction management skills as an effective member of a multi-disciplinary team.

Analyze methods, materials, and equipment used to construct projects.
Class of 2011
Construction Management
Learning Outcomes

Analyze construction documents for planning and management of construction processes.

Demonstrate the basic principles of structural behavior.
Demonstrate the basic principles of mechanical, electrical, and plumbing systems.

Explain the basic principles of sustainable construction.
Class of 2011
Construction Management Learning Outcomes

Apply basic surveying techniques for construction layout and control.

Create construction project schedules.
Create construction project estimates.

Explain construction accounting and cost control.
Explain construction risk management.

Explain the legal implications of contract, common, and regulatory law to managing a construction project.
Class of 2011
Construction Management
Learning Outcomes

Create a construction project safety plan.

Analyze professional decisions based upon ethical principles.
Class of 2011
Construction Management
Learning Outcomes

Apply electronic-based technology to manage the construction process.

Analyze different methods of project delivery and roles and responsibilities of all constituencies involved in the design and construction process.
Class of 2011
Construction Management
Learning Outcomes

Explain construction quality assurance and control.

![Graph showing 83% strongly agree and 17% agree.]

Explain construction project control processes.

![Graph showing 50% strongly agree and 50% agree.]

Class of 2011
Facilities Planning and Management Learning Outcomes

Demonstrate knowledge of the fundamental principles in business and management together with knowledge concerning current technologies necessary for entry-level facility planning professional practice.

Apply quantitative decision-support tools and knowledge of the fundamental aspects of the built environment to completing fundamental facilities planning decisions.
Formulate the team of FM professionals needed to deliver quality building services and explain the critical role the facility manager provides in operations for the organization.

Apply ethical principles, including correct regulatory codes, to facility planning decisions.
Class of 2011
Facilities Planning and Management Learning Outcomes

Demonstrate effective professional communication skills.

Integrate learning to address real world problems in facility planning.
Class of 2011  
Industrial Design  
Learning Outcomes

Locate and critically evaluate information for its appropriateness and validity.

Communicate effectively in written formats.
Class of 2011
Industrial Design
Learning Outcomes

Communicate effectively in oral formats.

Communicate effectively in visual formats.
Evaluate information and solve problems using analytical tools and skills.

Identify the traits of good leadership.
Class of 2011
Industrial Design
Learning Outcomes

Work effectively in teams.

Recognize ethical issues and apply ethical perspectives/concepts.
Class of 2011
Industrial Design
Learning Outcomes

Explain the sustainable use of human, physical, and economic resources.

![Bar chart showing 50% Strongly Agree and 50% Agree among Industrial Design 2011 Alumni Responses]

Recognize and identify historical and contemporary societal and global issues.

![Bar chart showing 75% Strongly Agree and 25% Agree among Industrial Design 2011 Alumni Responses]
Class of 2011
Industrial Design
Learning Outcomes

Teamwork Skills

% of Industrial Design 2011 Alumni Responses

Strongly Agree
Agree
Class of 2011
Interior Design
Learning Outcomes

Locate and critically evaluate information for its appropriateness and validity.

Communicate effectively in written formats.
Class of 2011 Interior Design Learning Outcomes

Communicate effectively in oral formats.

Communicate effectively in visual formats.
Class of 2011
Interior Design
Learning Outcomes

Evaluate information and solve problems using analytical tools and skills.

Identify the traits of good leadership.
Class of 2011
Interior Design
Learning Outcomes

Work effectively in teams.

Recognition of ethical issues and application of ethical perspectives/concepts.
Class of 2011
Interior Design
Learning Outcomes

Explain the sustainable use of human, physical, and economic resources.

![Graph showing percentage responses]

Recognize and identify historical and contemporary societal and global issues.

![Graph showing percentage responses]
Class of 2011
Interior Design
Learning Outcomes

Teamwork Skills.
Class of 2011
Business Management
Learning Outcomes

Demonstrate knowledge of the fundamental principles in the functional areas of business.

Explain the global dimensions of business.
Class of 2011 Business Management Learning Outcomes

Apply ethical principles to leadership decisions.

Apply quantitative decision-support tools in decision making.
Demonstrate effective professional communication skills.

Integrate learning to address real world problems.
Class of 2011
Mechanical Engineering Technology Learning Outcomes

Ability to apply knowledge of advanced mathematics (including differential equations and statistics), science, and engineering to solve the problems at the interface of engineering and biology.

Ability to design and conduct experiments, as well as to analyze and interpret data from living and non-living systems.
Class of 2011
Mechanical Engineering Technology
Learning Outcomes

Ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

Ability to function on multi-disciplinary teams.
Class of 2011
Mechanical Engineering Technology Learning Outcomes

Ability to identify, formulate, and solve engineering problems.

Understanding of professional and ethical responsibility.
Ability to communicate effectively.

Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
Class of 2011
Mechanical Engineering Technology Learning Outcomes

Recognize the need for, and an ability to engage in life-long learning.

Knowledge of contemporary issues.
Class of 2011
Mechanical
Engineering Technology
Learning Outcomes

Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.