Academic Resources
Accelerate, Wentworth Innovation + Entrepreneurship Center

ACCELERATE, Wentworth Innovation + Entrepreneurship Center was conceived as a logical extension of Wentworth’s already existing strengths and disciplines to drive thought partnerships, interdisciplinary engagement, and out-of-the-box ideas among students, alumni, industry, and the Boston community. ACCELERATE aims to build innovative thinking and entrepreneurial confidence in our students.

Since our inception in 2012, over 4,000 participants have engaged in our programs. ACCELERATE has proven to a catalyst for encouraging a student’s passion, whether it is to start their own venture, work in a startup, or become intrapreneurs for an established company. The experiences and education gained through ACCELERATE will position them for the future.

The Startup Challenge
The Startup Challenge provides a platform for students to form interdisciplinary teams and develop an idea they are passionate about.

The Social Innovation Lab
The Social Innovation Lab is a 12-week interdisciplinary and immersive experience encouraging co-op students to create innovations that matter, solve real-world issues, and work in a high-intensity environment.

Innovation Methodologies
Innovation Methodology activities are a proactive method of injecting innovation, entrepreneurship culture, and education by holding pop-up workshops in classrooms and around campus.

External Collaborations
In collaboration with the City of Boston, College ThinkTank and Citystart Boston are social innovation accelerators that bring together students, residents and community leaders from across Boston's varied and diverse neighborhoods to tackle specific problems from those neighborhoods.

Academic Advising
Academic advising is an integral part of the Wentworth student experience with a primary objective of encouraging students to take full advantage of the learning environment and available resources. Wentworth's academic advisors assist students in becoming aware of their interests, talents, values, and priorities. They facilitate the connection between a student's academic experience and future life plans. In essence, the goal of Wentworth's advising system is to equip students with the tools and resources necessary to negotiate higher education.

All students are assigned an advisor from their respective academic disciplines. Advisors counsel students on curricular matters, monitor student academic progress, review academic policies and procedures when necessary, review student course selections prior to registration, and answer questions regarding student career and educational objectives. First-year students are required to meet with their academic advisor to discuss curricular decisions and to obtain a Registration Access Code (RAC) from their advisor. They will be introduced to their advisor during Wentworth Opening Week (WOW) or within the first few days of classes.
Students are encouraged to discuss academic problems and seek help from their instructors and advisors as early as possible. In addition, the Center for Academic Excellence provides many resources to help students reach their full learning potential and exceed academically.

Advisor Help

Course Registration

- In your first year, your academic advisor will provide you with a Registration Access Code (RAC) needed to register for spring or summer courses. This ensures that you check in with your advisor to review your proposed class schedule.
- After the first year, most students will use the major tracking sheet to identify which courses to take each semester. Be sure to review this sheet in advance of course registration and ask your advisor if you have any questions.
- If you are off track, have advanced placement credit, transfer credit, have withdrawn from or failed a class, or otherwise did not follow the tracking sheet, plan to meet with your advisor every semester for course registration advice. Try to meet with your advisor in the middle of the semester to give you both time to plan adequately for course registration.
- General guidelines for course registration, including questions about time conflicts and schedule guidelines can be found on the [Student Services Website](#).

Course Withdrawals and/or Failures

- If you are considering withdrawing from a class after the add/drop period is over, contact your advisor to discuss the impact. Withdrawal from a class may affect your financial status, ability to live on campus, and ability to fully participate in campus clubs and/or athletic participation, especially if you plan to drop below 12 credits. International students are strongly encouraged to speak with a staff member in the International Services Office as this may affect their immigration status.
- To withdraw from a class, ask your academic advisor to sign withdrawal form.

Majors and Minors

- There are no undeclared major students at Wentworth. At the beginning of your first semester, you begin your major-specific courses.
- If you wish to change your major, discuss this with your advisor. To change majors, you must meet with the department chair of the major you are considering. Students who change majors will be assigned a new advisor in the new major.
- A number of minors are available at Wentworth. Minors are declared in consultation with your advisor after the first semester. Discuss a potential minor with your advisor to develop a plan for required classes. After discussing the minor options with your advisor, follow the minor declaration process. If you no longer wish to pursue a minor, you must undeclare the minor. Your academic advisor can assist you with this process.

Academic Difficulties and Probation

- If you are experiencing academic difficulty in a class, receive an academic warning and/or academic probation, speak with your academic advisor and faculty as soon as possible.
- Early and active outreach to academic advisors and faculty can help you get back on track.
The Center for Academic Excellence has a wide variety of methods to support your success:
- One-on-one tutoring
- Learning labs
- Course-specific review sessions
- Faculty led facilitated study groups (FSGs) and group tutoring options
- Individual academic coaching and mentoring
- Workshops

You are encouraged to come in early and often to the Center for Academic Excellence to strengthen your learning strategies, talk about a confusing concept, and review content.

The Center for Wellness and Disability Services provides free mental health counseling as well as information about accommodations.

Co-op

- Faculty typically have professional connections, work, and scholarly research experience. In addition, they have years of experience advising students seeking co-ops and debriefing with students who have just returned from co-ops. They are great resources for students to discuss potential and possible co-ops options.
- Your advisor can help you think about new areas of your field based on your interests, talents and experiences in academic and other pursuits.
- In addition to your advisor, the Co-ops and Careers Office maintains advisors for each major who can assist you with planning for your co-op.

College of Professional and Continuing Education

Wentworth’s academic advisors are also available to assist adult students in reaching their educational goals. Once accepted into the College of Professional and Continuing Education, you will be assigned your own, dedicated academic advisor. Students are encouraged to reach out to their advisor regularly. Your academic advisor at Wentworth will help you stay on track with your schedule and make sure any concerns you have along the way are addressed.

A list of our advisors for specific programs can be found on the Advising Staff Page.

Center for Academic Excellence
Joan Giblin, Director of Student Achievement
Beatty Hall, Room 402
617-989-4545

The Center for Academic Excellence facilitates academic success for each Wentworth student and helps them achieve their individual learning potential. Students may choose to receive individual assistance through one-on-one tutoring in many subjects, including math, science, writing, and major classes. In addition, the Center for Academic Excellence offers Facilitated Study Groups (FSGs), tutor-led study tables, Learning Lab review sessions, academic workshops, and learning strategy consultations. The peer tutoring program is certified by the College Reading and Learning Association’s International Tutor Training Certification program.
The Center for Academic Excellence provides academic assistance free of charge to any Wentworth student. The staff includes:

- Peer tutors, who assist students with mathematics, science, and major subjects
- Faculty from various departments who assist with mathematics and technical courses
- Writing tutors who assist students with questions about writing papers, conducting research, preparing outlines, or brainstorming ideas.

The Center for Academic Excellence, located in Beatty 402, is open Monday through Friday. Specific hours and a complete list of services can be accessed through the Center for Academic Excellence website at wit.edu/cae.

Center for Cooperative Education and Career Development (Co-ops + Careers)
Robbin Beauchamp, Director
Wentworth Hall, Room 101
617-989-4101

Wentworth’s Center for Cooperative Education and Career Development (CO-OPS + CAREERS) offers students and graduates a full range of career services, including cooperative education and career advising, career information and resources, graduate school planning, and opportunities to network with employers. The office is located in Wentworth Hall and is open Monday through Friday, 8:15 a.m. to 4:45 p.m., and some evenings. Call for a current schedule.

Advising
CO-OPS + CAREERS provides career advising to students and alumni at any point in their college or post-college experience. **CO-OPS + CAREERS** staff help students and alumni research occupational and employment information, establish short- and long-term career goals, explore different career paths, and make informed and purposeful career decisions.

Cooperative Education (Co-op)
As a requirement for graduation, undergraduate day-program students complete two cooperative education semesters, typically one in each of the junior and senior years. Students must register for COOP 3500 or COOP 4500 to fulfill a co-op requirement and report the co-op hire on WITworks (wit.edu/career-services/current/WITworks.html), an online job-posting and co-op management system. Typically, students will not take other courses during their co-op semesters. Enrollment in a co-op course maintains a student’s full-time student status.

Note that transfer students must complete at least one semester at Wentworth before being eligible for the co-op program.

Students must be in good academic standing to complete a co-op. Students not meeting this standard by the end of the semester immediately preceding their co-op term will not be eligible for co-op. These students will be dropped from their co-op enrollment.

Upon completion of the co-op and required assignments, students earn a Satisfactory/Unsatisfactory (S/U) grade, which is recorded on the student’s academic transcript.

Occasionally students enter the baccalaureate day programs with substantial work experience in their major field. With the approval of the director of **CO-OPS + CAREERS** department, this work experience
may be substituted for one of the co-op requirements. Students must formally petition to receive this course substitution.

Two semesters of optional co-op education are also offered, typically one in the summer prior to junior year for students who have completed all prerequisites for junior year courses and are in good academic standing, the other for students who have successfully completed their two required semesters of co-op and obtained permission from their academic department and CO-OPS + CAREERS advisor.

There is no co-op requirement for students in the College of Professional and Continuing Education.

Co-op Schedule
- First Year Fall: Class
- First Year Spring: Class
- Second Year Fall: Class
- Second Year Spring: Architecture Required 1
- Second Year Summer: *Optional Co-op*; Math 3-Year Required 1
- Third Year Fall: Class
- Third Year Spring: *Co-op Required 1*; Math 3-Year Required 2
- Third Year Summer: Architecture Required 2; Electromechanical Required 1; Math 4-Year Required 1
- Fourth Year Fall: *Co-op Required 2*
- Fourth Year Spring: Math 4-Year Required 2
- Fourth Year Summer: Electromechanical Required 2
- Fifth Year, Electromechanical ONLY:
 - Fall: Class
 - Spring: Class
 - Summer: Class

Those listed in bold italic are co-op semesters for all other majors not listed.

Co-op Institute
This seminar provides students with the skills and knowledge needed to successfully obtain a co-op position. Students are taught by their advisor, who supports their individual majors. Guest instructors are industry employers and co-op student panels. Students learn about résumé and cover letter development, interviewing skills, professionalism on the job, networking, and how to successfully register for their co-op semesters. Students typically take Co-op Institute the semester prior to their first co-op.

Career Tools
CO-OPS + CAREERS assists students and alumni who seek to explore possibilities that match their career goals, develop job-search competencies and methods to present themselves effectively, obtain information on employment opportunities (full-time and co-op) and prospective employers, connect with employers, and develop and maintain relationships with employers.

Through WITworks, career fairs, and specialized recruiting events, such as mock interview day, students and employers are able to connect for co-op and full-time job opportunities.
Graduate School Planning

CO-OPS + CAREERS assists students and alumni in obtaining information on graduate/professional schools and preparing for the graduate/professional school application process.

Laboratory and Studio Facilities

Wentworth’s laboratory and studio facilities are equipped with the tools, materials, apparatus, instrumentation, and machinery necessary to provide students with a variety of hands-on technical, industrial, and design experiences. This detailed listing of laboratory and studio facilities demonstrates the range of practical learning opportunities afforded to Wentworth students.

Architecture Design Studios (Annex North)

The Department of Architecture’s design studios comprise of three floors of the Annex North building. These large loft-like spaces with natural light and outside views provide dedicated work space for each student, as well as critique rooms for group reviews.

Architecture Center for Applied Research (Annex North)

The Department of Architecture’s Center for Applied Research (CfAR) is a student-focused collaborative environment for investigating emerging fabrication technologies and methods. CfAR supports the department’s core principle of thinking through making by providing a dynamic network of spaces for prototyping and applied research. Students have access to equipment, expertise, and guidance across many areas of fabrication including CNC milling, 3D printing, woodworking, laser-cutting, and robotics.

Biology Laboratories (Center for Sciences and Biomedical Engineering 122, 210)

The Department of Sciences has two biology labs in the Center for Sciences and Biomedical Engineering. These labs are outfitted with the newest equipment for conducting experiments in cell and molecular biology and biotechnology, and for performing studies for anatomy and physiology courses. These labs contain compound light microscopes, micropipettes, and spectrophotometers for introductory courses, as well as thermal cyclers and molecular imaging systems for DNA and protein analysis. The labs also feature cutting edge devices including fluorometers, a fluorescent microscope, and a real-time-PCR system for more sophisticated experiments. A dedicated space within the biology labs is designed for performing and teaching cell culture techniques, which includes a biosafety cabinet and incubator. Collectively, the biology labs are well equipped to provide students with the necessary tools and technology to gain relevant lab experience and skills for studying the natural world.

Biomedical Engineering Labs (Center for Sciences and Biomedical Engineering)

The Biomedical Engineering department has three labs in the Center for Sciences and Biomedical Engineering: the Biomedical Instrumentation and Medical Devices lab (BMIL), the Bioelectronics & Biofluids lab (BEFL), and the Biomedical Engineering Project lab (BEPL). Several medical devices used in clinical diagnosis, therapy, research, and development are housed in these labs in support of several lab-based courses in the biomedical engineering program. The devices in BMIL include biomedical electrical safety analyzers, heart rate and blood pressure monitors, pulse oximeters, electronic stethoscopes, ECG monitors, telemetry and nurse call systems, external pacemakers, defibrillators, AED’s, neonatal and transport incubators, electrolyte and blood gas analyzers, automated blood cell counters, and patient monitors, as well as a collection of special purpose simulators. BEFL contains several medical electronic sensors and signal processing units, biological work tables, centrifuges, microtome, cryostat, and infusion pumps. Both BMIL and BEFL include general test and calibration equipment, and provide access
to commonly-used engineering software and specialized biomedical software. BEPL is designed for final-year students to work on their senior interdisciplinary projects.

Altschuler Computer Center (Wentworth 004)
The Altschuler Computer Center is outfitted with the latest data center technology including Dell servers, Cisco routers and switches, patch panels, UPS systems, and an EMC VNX housed in server racks. Students work with a variety of operating systems and tools, including enterprise virtualization software, while creating a multitude of network and system configurations.

Blaisdell Biodiesel Lab (Center for Sciences and Biomedical Engineering 105)
This laboratory is equipped to handle the production and testing of biodiesel, as well as other advanced chemical experimentation. The lab houses a biodiesel reactor constructed by Wentworth students. There are two chemical hoods, as well as a large drop hood to handle larger equipment requiring ventilation. The laboratory is also equipped with other advanced chemical apparatus for refinement and analysis of chemical products.

Casella Robotics Laboratory (Rubenstein 101)
This laboratory is used in the study of robotic systems, as well as study of digital hardware including microprocessors, microcontrollers, digital signal processing technology, and FPGA- (field-programmable gate array) integrated circuits. The laboratory is equipped with two robotic arm systems, in addition to translational and rotational vibration modules that can be used as one- or multi-degree freedom vibrational systems. There are eight computers in this laboratory, which are linked together by a general-purpose interface bus to their own set of digital test equipment.

Chemistry Laboratories (Center for Sciences and Biomedical Engineering 326, 329, and 330)
Each of the chemistry labs is outfitted with the newest equipment for conducting experiments in general chemistry and selected topics in general chemistry, as well as organic and biochemistry. The chemistry labs contain integrated safety showers and eyewash stations, in addition to traditional chemistry laboratory equipment including centrifuges, hoods, micropipettes, and computer integrated spectrophotometers, ion-selective electrodes, conductivity meters, electrochemistry apparatus, Galvanic cells, spectrosopes heating and drying ovens, distillation equipment, constant temperature baths, and related devices. A dedicated space proximate to the chemistry labs is designed for performing and teaching use of IR (Infrared) spectrophotometers and other sensitive chemistry instrumentation. Collectively, the chemistry labs are well equipped to provide students with the necessary tools and technology for a collaborative learning environment.

Concrete Laboratory (Annex Central 012)
The lab's major pieces of equipment include two concrete mixers, sieve shakers, sample splitters, curing tank, scales, air content, slump and unit weight testing equipment, and drying ovens. Students learn the fundamentals of concrete mix design and testing in this lab. Tests are run on aggregates, as well as on the freshly made and hardened concrete. Students can measure the effect that different aggregate gradations, varying amounts of water, and the use of admixtures have on a concrete mix.
Construction Management Project Laboratory (Annex South 002 & 004)
The construction management lab provides students with place to apply the technical skills of a construction project from concept to completion. Some of the skills developed here include resource management, time, cost, and quality with an emphasis on team building. During a student’s collaboration here they will complete projects using such proficiencies as budgeting, scheduling, estimating, engineering fundamentals, and analytical and communication skills. Computer monitors are available for each work station, and both labs have a smart board and screens for presentations.

Construction Outdoor Laboratory
This paved outdoor space provides construction management students with an area to erect masonry and timber structures, and evaluate various construction methods and practices.

Electromagnetics and Telecommunications Laboratory (Wentworth 003)
The Electromagnetics and Telecommunications Laboratory is intended primarily to meet the needs of the rapidly growing telecommunications industry. This student work area is currently equipped with ten of the latest RF network analyzers and ten computers for work in electromagnetic field theory.

Electronics Laboratory (Dobbs 202)
The Electronics Laboratory is a core work area for all electrical and computer engineering, and technology students. Twenty computers, each linked by a general purpose interface bus to its own set of test equipment, enable students to perform computer-aided tests, circuit analysis and simulation tasks, and to solve data acquisition and process control problems. Each computer is loaded with an array of current software packages and is connected for e-mail and internet access.

Electronics Project Laboratory (Dobbs 303A)
This laboratory provides students with an area to build and test their prototypes. The laboratory contains standard electronic bench equipment (oscilloscope, digital multimeter, function generator, and power supply), and workbenches and similar equipment are available for component assembly and packaging, and mechanical assembly.

Fluid Mechanics Laboratory (Kingman 101)
This laboratory contains an array of fluid testing and propulsion equipment, such as a subsonic wind tunnel, a variable-frequency drive pumping station, a supersonic/compressible flow system, a friction pressure drop piping system for circulating water, a Saybolt Universal Viscosimeter, and a velocity profile/pitot tube apparatus.

Fluids and Hydraulics Laboratory (Annex Central 005)
Equipment in this laboratory is used to demonstrate the basic principles of hydraulics and fluid flow in both open channels and closed conduits. Students learn the concepts of buoyancy, velocity of flow, energy losses in bends and restrictions, sediment transport, and pump efficiency. Each of the large benches has a reservoir and a pump to circulate water. Individual experiments can be hooked up to these, allowing students to have separate workstations. Of particular note are the two five-meter flumes.

Geotechnical Laboratory (Annex Central 009)
The major pieces of equipment in this laboratory include a triaxial machine, two direct shear machines, two unconfined compression machines, four consolidometers, a data collector, and sieve shaker. Tests
on field-obtained soil samples can be performed to characterize and classify soil and to determine the strength, settlement, and drainage characteristics of soil deposits, information which is essential to the design of shallow and deep foundations, embankments, retaining walls, and base courses for highways.

Heat Transfer Laboratory (Kingman 102)
The Heat Transfer lab enables students to study principles of heat conduction, convection, and radiation. It includes equipment for axial and radial conduction experiments, a shell and tubes and a plate heat exchanger. The lab also contains equipment and sensors that allow students to investigate transient heat transfer and lumped system analysis, radiation properties, heat sink, and heat pipes.

Instrumentation Lab (Kingman 102)
The Instrumentation laboratory enables mechanical engineering and electromechanical engineering students to learn moist air properties and air-conditioning processes, and also investigate various heating, ventilation, and air conditioning (HVAC) systems and refrigeration cycles. This lab houses several basic vapor compression refrigeration systems, and an industrial type vapor-compression system with double evaporator and water cooled condenser. It is also equipped with a basic air-conditioning system to study psychometric processes, as well as general engineering instrumentation processes.

Industrial Design Studios (Annex East and Annex South)
Beginning a student's sophomore year, the Department of Industrial Design provides dedicated studio space for each student. Studios include space for classes and individual work during evening and weekend hours. The studios also include several model shops equipped with traditional machines, as well as rapid prototyping fabrication. Full-time lab technicians monitor all model shops. There is also a digital imaging lab for drawing and photography.

Interior Design Studios (Annex South)
Starting in the sophomore year, the Interior Design Department provides dedicated studio space for each student. Studios include space for classes and individual work during evening and weekend hours. The studios also include critique spaces and a materials resource room.

Manufacturing Center (Williston 001)
The Manufacturing Center has four laboratory areas: the machining lab, the rapid prototyping lab, the metal fabrication space, and the foundry lab.

The machining lab has six computer numerically controlled (CNC) lathes, six CNC three-axis knee mills, a CNC three-axis bed mill, two vertical machining centers, and a coordinate measuring machine. Through experiential laboratory activities, students learn the principles of material removal, from basic, manual operations through the most advanced computer aided manufacturing (CAM) processes.

The Rapid Prototyping (RP) lab contains multiple 3-D printing processes enabling students to fabricate models for projects courses and sand casting patterns for the foundry. As is true in the machining section, all RP processes are on the Institute network, allowing remote access file handling.

The metal fabrication area contains basic sheet metal fabrication equipment, along with a four-ft. by four-ft. CNC plasma torch table. There are six multi-process gas metal arc welding (GMAW) stations on downdraft tables.

The foundry lab is used to pour aluminum parts using the green sand casting process.
Materials Science Laboratory (Dobbs 104D)
The Materials Science Laboratory is equipped with all of the necessary equipment to introduce students to the concepts and fundamentals of materials. Metallographic samples are prepared with the help of diamond cut-off saws and electro-hydraulic automatic mounting presses. Microstructural analysis can be performed on one of several inverted microscopes equipped with digital imaging hardware. High temperature, industrial box furnaces, and cold-rolling equipment are used to demonstrate the relationship of manufacturing processes and resulting material properties. Other topics of experimentation include electrochemical corrosion and polymer-matrix composite materials.

Nanotechnology Laboratory (Dobbs 006)
This laboratory is used to supplement nanotechnology courses. The lab supports undergraduate research through senior design offerings and special student projects, and allows for teaching across engineering disciplines to promote cross-disciplinary teamwork at Wentworth. The laboratory encompasses a nanoparticle deposition system capable of generating nanoparticles of different sizes from different materials in a differential pressure vacuum system, along with an atomic force microscope, and other test and characterization equipment.

Physics Laboratories (Center for Sciences and Biomedical Engineering 201, 206, 207, 211, 212)
The Physics Laboratories are equipped to support introductory experiments in mechanics, fluids, sound, waves, electric and magnetic fields, and optics. They are also equipped to support more advanced physics experiments such as spectrum of gases, interferometry, photo-electric effect, electron to mass ratio, electron beam deflection by electric and magnetic forces, and X-rays. These experiments are performed with the help of a variety of precise and/or complex instruments that include electron tubes, an X-ray machine, precision interferometers, spectrometers, acoustic devices, an optic table, oscilloscopes, function generators, helium-neon lasers, and a complete microwave optics system. One of the labs is designed to perform light sensitive experiments in optics. The department also has its own weather station, providing a variety of weather related data.

Power and Controls Laboratory (Wentworth 007)
The Power and Controls Laboratory is a specialty lab dedicated to the study of various sized motors and generators, and to the analysis and design of analog and digital feedback control systems. Centered on four machine sets, this student work area is supported by ten computers, digital oscilloscopes, and digital multimeters.

Project Laboratory (Kingman 103)
This multi-purpose laboratory space is dedicated to student-based innovative projects. Machining equipment, welding facilities, and a variety of tools are available in this area.

Materials Testing Laboratory (Annex Central 007)
This laboratory space is used for soil identification and analysis. It contains ovens, sieves, scales, and two concrete cylinder compression machines.

Gelfand Strength of Materials Laboratory (Dobbs 008)
The Gelfand Strength of Materials Laboratory houses electrodynamic and hydraulic testing equipment, which allows students to investigate important material properties such as tensile strength, shear stress,
and elasticity. Other major apparatus featured in this lab include a fatigue tester, a beam deflection station, a rotating beam device, an impact tester, a temperature creep tester, and electronic strain gages. Students also analyze various structures and profile the results using graphics software.

Survey Locker (Annex North)
This locker houses an impressive collection of state-of-the-art equipment for making linear and angular measurements, as well as locating points with a high degree of accuracy. Included are 10 automatic levels, 10 theodolites, five total stations with internal data collectors, one electronic digital level, one laser level, and two global positioning systems with multiple receivers. Students in the Civil Engineering, Civil Engineering Technology, and Construction Management programs are introduced to the theory of measurement in lecture and gain practical experience by using the instruments in lab. Surveying is conducted on and around the campus.

Thermodynamics Laboratory (Rubenstein 005)
The Thermodynamics Laboratory serves students enrolled in mechanical and electromechanical degree programs and enables them to study the use of energy for the purposes of mechanical and electrical power production. This lab features a turbo-charged diesel engine/generator station, a calorimeter for fuel analysis, an air heat-recovery ventilator (white enclosure) for indoor air quality, a state-of-the-art small engine dynamometer, and an aircraft gas turbine. Students are introduced to pressure, temperature, and humidity testing devices such as transducers, vacuum gages, thermocouples, and barometers. Engine efficiency and performance tests are conducted, and students learn basic properties of various fluids.

Environmental and Unit Operations Laboratory (Annex North 003)
This laboratory houses a variety of typical laboratory analytical equipment and assorted glassware including two 200-gallon wastewater pilot test tanks, a reverse osmosis water treatment system, three incubators for B.O.D. testing and incubating biological samples, a water distillation column, biological and chemical testing instrumentation, batch mixers, gas chromatograph, flame and graphite furnace atomic absorption spectrophotometer, six chemical hoods, various pumps filters, and metering instruments, assorted glassware, and six bench microscopes.

Douglas D. Schumann Library & Learning Commons
Beatty Hall Second & Mezzanine Floors, Call: (617) 989-4040, Text: (617) 600-5989
Website: library.wit.edu
Fenway Libraries Online (FLO) and Fenway Library Consortium (FLC) members: fenwaylibraries.org
Circulation Desk: circdesk@wit.edu
Reference Desk: ref@wit.edu
Twitter/Instagram: @WITLibrary
Facebook: facebook.com/WITlibrary

The Douglas D. Schumann Library & Learning Commons is a dynamic, technology-driven space for students and faculty to collaborate and learn. The library is open seven days per week during the semester, and offers extended hours during final exam periods. For the most current information about our hours, check the Douglas D. Schumann Library & Learning Commons website (library.wit.edu).
Our librarians select materials in multiple subjects to meet the curricular, informational, and educational needs of the Wentworth community. The collection includes physical and digital access to books, journals, databases, and multimedia, with new resources added regularly.

The Douglas D. Schumann Library & Learning Commons provides access to cutting-edge technology tools in the Lloyd Andres Carney Technology Sandbox. Located on the first level, the Tech Sandbox provides 3D printing and scanning to print 3D models. The library loans technology resources—including digital cameras, 360-degree cameras, Arduinos, and Raspberry Pis—to students and is constantly adding new technology to our lending library. Visit library.wit.edu/tech-sandbox/technology-lending for updates.

Materials from beyond Wentworth can also be borrowed through our online FLO catalog, featuring nine other COF libraries. We’re also a member of the Fenway Library Consortium (FLC), which allows you to visit and borrow from six additional libraries in the area with a Wentworth ID. If something is not available through FLO or FLC, we can get it through our Interlibrary Loan service (ILL).

Walk-in research assistance is available at the library's Reference Desk. If you need more in-depth assistance with a specific assignment, project, or theme, a one-on-one or group session can be scheduled with a librarian who can offer customized help. The Douglas D. Schumann Library & Learning Commons librarians prioritize helping students learn to identify and evaluate the many information resources that can be found on site, or online, for their careers at Wentworth and beyond.

The Douglas D. Schumann Library & Learning Commons is also a great place to study. With eight high-tech group study rooms, a quiet reading room, and many flexible collaboration areas, you will find a spot that fits your needs, whether you are engaged in interdisciplinary learning with classmates or looking for a solitary space.

Division of Technology Services
Tech Spot
Beatty Hall, Room 320
Help Desk 617-989-4500, helpdesk@wit.edu
wit.edu/dts

The Division of Technology Services supports all aspects of technology at the Institute.

Vision
To provide and service technologies that will:

- enrich the experience of Wentworth’s stakeholders
- enhance the reputation of the Institute
- facilitate a culture of innovation and creativity through technology

Mission
Build relationships across the Institute to ensure that technology solutions are creating opportunities to improve effectiveness and efficiencies, and are agile enough to facilitate growth, innovation, and creativity.

Divisional Goals
- Operational excellence
Information security/regulatory compliance
- Customer service
- Collaboration and mobility
- Financial stewardship
- Leadership, partnership, and business enabling

Operational Goals
- Employ best practices in managing technology operations to ensure cost-effective delivery of reliable, scalable services.
- Stability and reliability of core services
- Innovation
- High-quality personnel
- Exceptional planning and project management

Programs of Service

Administrative & Business
Enterprise and local services that support the administrative and business functions of an institution. Includes reporting, descriptive analytics, finance, student information systems, advancement, and conference and event support.

Communication & Collaboration
IT services that facilitate institutional communication and collaboration needs. Includes e-mail, calendaring, telephony/VoIP, video/web conferencing, unified communications, digital and web communications, and media/AV services.

End-Point Computing
Services that enable community members to do their day-to-day work, including providing access to enterprise services. Includes network access, user file storage, end-point computing backup solutions, desktop support, computer labs, and printing/plotting.

Infrastructure
Enterprise-level hardware, software, systems, and network infrastructure that provide underlying support for Institute activities. Includes data centers, Internet access, wired and wireless networking, telephony and collaboration tools, central storage and backup solutions, virtual servers, and systems management.

IT Professional Services
Services that are consultative in nature; these may be a combination of customer-facing and non-customer-facing services. Includes IT training, consulting/advisory services, business continuity/disaster recovery, enterprise architecture, portfolio/project management, business systems analysis, and IT Service Management.

Security
Infrastructure and services that provide security, data integrity, and compliance for institutional activities. Includes services such as virus protection, encryption, privacy impact assessments, risk management, emergency preparedness, data security, access controls (i.e., accounts, passwords), audit and monitoring systems, and stewardship.
Teaching & Learning
Learning management system and academic technology infrastructure and services to support course consulting, meaningful integration of instructional technology, and resources directly supporting face-to-face, hybrid, online delivery. Includes: course design, teaching with technology, engaging students, using Bb Learn, and learning analytics.

Learning Innovation & Technology
Tes Zakrzewski, Director of Learning Innovation & Technology
Annex Central, Room 208
617-989-4989
lit@wit.edu
wit.edu/lit

Learning Innovation & Technology (LIT) is dedicated to supporting academic excellence by awakening, nurturing, and empowering all faculty members to be effective educators able to ensure quality student learning at Wentworth Institute of Technology by:

- Delivering flexible, creative, multimodal programs and resources to create transformational learning experiences, and deepen student engagement
- Enhancing faculty’s ability to design and facilitate experiential courses (classroom-based, technology-enabled, hybrid, or fully online) aligned with program and Wentworth goals
- Fostering informal learning and interdisciplinary collaboration among faculty around experiential, project-based teaching, learning, and scholarship

By advancing our mission, participating faculty will, in part, be able to:

- Use effective, dynamic teaching practices that cultivate experiential learning environments
- Reflect on teaching practices for continual development
- Design courses and curricula that maximize course alignment and academic effectiveness
- Use and/or develop appropriate tools and practices for assessing student work
- Collaborate with other faculty to support growth and collegiality