

Hazardous Area Robotic Arm (HARA)

Erin Morton, Rob Moran, Craig Rich & Rj Woodward Advisor: Bo Tao School of Engineering

Abstract

- Robotic arm replicates movements made by the user wearing the control sleeve.
- The robot may be used by essential employees to maintain a safe distance from possible exposures.
- Measurable Objectives:
 - Payload of 0.25 lbs.
 - Reaction time of 0.1 seconds
 - Radius of motion to be 1 foot

Introduction

As a group, we wanted to make something that would help benefit those who are most in danger of contracting COVID-19. HARA was initially designed to assist hospital workers checking up on patients, allowing them to help give care from a safe distance. HARA's design has since evolved to be able to assist any essential worker that comes in frequent contact with the public and germs. This includes store cashiers, toll booth workers and much more.

Project Plan

Brainstorm/Research

- Create team roles and divide tasks
 - Create CAD model
 - Create Arduino code
 - Determine proper loading 3 specifications
 - Build Arduino schematics
- Assemble
- Testing
- Improvements and final product

Placement of sensors on arm:

- Claw flex sensor is placed along the fingers Wrist sensor is placed on top of the hand. This will measure wrist bending and rotation. Elbow sensor is placed along the back of
- the forearm.
- The shoulder sensor is placed along the back of the upper arm. This measures all axis' and will manipulate the base component of HARA.

Methodology

Servo Selection Process

- Based on Factor of Safety (2),
- Must conform with power (5V) and joint rotation requirements
- Servo must meet or exceed torque values found in the Calculations Section
- Unit weight must be deemed appropriate versus torque supplied

Models, Assemblies, & Schematics

Reference

[1] Mechanical Engineering Department. "MECH3000 Design of Machine Elements". Lab Handout. Wentworth Institute of Technology

[2] "MPU 6050 Tutorial: How to Program Mpu 6050 with Arduino." Arduino Project Hub, create.arduino.cc/projecthub/MissionCritical/mpu-6050-tutorial-how-to-program-mpu-6050-with-arduino-aee39a.

[3] Zoysa, Kavindu Gimhan. "Lets Work with MPU6050 (GY-521) - Part1." *Medium*, Medium, 26 Dec. 2017, medium.com/@kavindugimhanzoysa/lets-work-with-mpu6050-gy-521part1-6db0d47a35e6.

Calculations

Wrist, elbow, and shoulder calculations are shown below for information used to determine the torque required for each servo.

Elbow Calculations								
Part	Distance from CoM (mm)	*	Mass (g)	=	Resultant Torque (g•mm)			
Weight	265.175	*	113.500	=	30,097.363			
HARA-X-002	224.082	*	111.970	=	25,090.462			
HARA-X-003	160.000	*	88.730	=	14,196.800			
HARA-X-004	83.888	*	140.680	=	11,801.364			
			Total Torque		81,185.988			
To convert g∙mm to kg∙cm, divide by 10,000			Required To	rau	e on loint			
			8.119 kg•cm					

Targeted Factor of Satey Targeted Torque With FOS of 2 16.238 kg•cm

Shoulder Calculations								
Part	Distance from CoM (mm)	*	Mass (g)	=	Resultant Torque (g•mm)			
Weight	389.625	*	113.500	=	44,222.438			
HARA-X-002	349.530	*	111.970	=	39,136.874			
HARA-X-003	286.030	*	88.730	Ξ	25,379.442			
HARA-X-004	208.000	*	153.680	=	31,965.440			
HARA-X-005	84.000	*	158.880	=	13,345.920			
			Total Torque		154,050.114			
To convert g∙mm to kg∙cm, divide by 10,000			Required Torque on Joint 15.405 kg•cm					
Targeted Factor of Satey			Targeted Torque With FOS of 2 30.81 kg•cm					

Special thanks to Professor Michael Cameron and Professor Bo Tao for their contributions to this project.